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Solving the Boltzmann–BGK equation, we investigate a flow generated by an infinite
plate oscillating with frequency ω. The geometrical simplicity of the problem allows a
solution in the entire range of dimensionless frequency variation 0 � ωτ � ∞, where
τ is a properly defined relaxation time. A transition from viscoelastic behaviour
of a Newtonian fluid (ωτ → 0) to purely elastic dynamics in the limit ωτ → ∞ is
discovered. The relation of the derived solutions to nanofluidics is demonstrated on
a solvable example of a ‘plane oscillator’. The results from the derived formulae
compare well with experimental data on various nanoresonators operating in a wide
range of both frequency and pressure variation.

1. Introduction
During the last two centuries, the Newtonian fluid approximation has been

remarkably successful in explaining a wide variety of natural phenomena ranging
from flows in pipes, channels and boundary layers to the recently discovered
processes in meteorology, aerodynamics, MHD and cosmology. With the advent of
powerful computers and the development of effective numerical methods, Newtonian
hydrodynamics remains the foundation of various design tools widely used in
mechanical and civil engineering. Since technology in the past dealt with large
(macroscopic) systems varying on the length and time scales L and T , the Newtonian
fluid approximation, typically defined by the smallness of the Knudsen and Weisenberg
numbers Kn = λ/L � 1 and Wi = τ/T ≈ (λ/L)(u/c) = KnMa � 1, where Ma = u/c is
the Mach number, was accurate enough. The length and time scales λ and τ ≈ λ/c,
are the mean-free path and relaxation time, respectively.

With recent rapid developments in nanotechnology and bioengineering, quantitative
descriptions of high-frequency oscillating microflows, i.e. flows where the Newtonian
approximation breaks down, have become an important and urgent task from
both basic and applied science viewpoints. Modern micro- (nano)electromechanical
devices (MEMS and NEMS), operating in the high-frequency range up to
ω/2π = O(108−109 Hz) (Wi = ωτ � 1), can be used for small biological mass detection,
subatomic microscopy, viscometry and other applications (Service 2006; Cleland
& Roukes 1998; Binning, Quate & Gerber 1986; Ekinci, Huang & Roukes 2004;
Verbridge et al. 2006). The manufactured devices are so small and sensitive that
adsorption of even tiny particles on their surfaces leads to a detectable response in
the resonator frequency peak (shift), enabling these revolutionary applications. Since
both the frequency shift and width of the resonance peak depend upon properties
of the resonator-generated flows, the microresonators may serve as sensors enabling
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accurate investigation of fundamental processes in microflows. Often, oscillating
flows are a source of new and unexpected phenomena. For example, in a study of
the high-frequency electromagnetic-field-driven nano-resonators of linear dimensions
h × w × L ≈ 0.2 × 0.7 × 10 µm; K. L. Ekinci & L. M. Karabacak (2006, personal
communication) observed a transition in the frequency dependence of the inverse
quality factor from 1/Q ≈ γ /ω ∝ 1/

√
ω, expected in the hydrodynamic limit, to

1/Q ∝ 1/ω in the high-frequency (kinetic) limit. Since γ is proportional to the
energy dissipation rate (W ) into a surrounding gas, the effect discovered points to
a frequency-independent dissipation rate W . No quantitative theory describing this
transition has been developed.

2. The Boltzmann–BGK equation
Interested in the rapidly oscillating flows, where the Navier–Stokes equations break

down, we consider the kinetic equation in the relaxation time approximation (RTA):

∂f

∂t
+ v · ∇f = C. (2.1)

In accord with Boltzmann’s H-theorem, the initially non-equilibrium gas must
monotonically relax to thermodynamic equilibrium. This leads to the relaxation
time anzatz, qualitatively satisfying this requirement:

C ≈ −f − f eq

τ (f )
. (2.2)

In the mean-field approximation, valid close to equilibrium where all gradients are
small, τ (f ) = τ = const. In what follows we set the Boltzmann constant kB = 1

and define temperature as θ = (v − u)2/d , where v = u and d stands for the
space dimensionalty. This equation, with f eq = ρ/(2πθ)3/2 exp(−(v − u)2/2θ ), often
considered as a generic equation of fluid dynamics, is the celebrated Boltzmann–
BGK equation widely used for both theoretical and numerical (Lattice Boltzmann
Methods) studies of non-equilibrium fluids (Bhatnagar, Gross & Krook 1954; Chen &
Doolen 1998; Chen et al. 2003; Benzi, Succi & Vergassola 1992).

The Chapman–Enskog expansion of BGK. Multiplying (2.1), (2.2) by v and
integrating over v gives

∂ui

∂t
+ uj

∂ui

∂xj

+
1

ρ

∂

∂xi

σij = 0 (2.3)

where the stress tensor, written for i �= j is

σij = ρ(vi − ui)(vj − uj ) ≡
∫

dv(vi − ui)(vj − uj )f (v, x, t). (2.4)

Usually, evaluation of the stress tensor is a difficult task. The simplified system
(2.1)–(2.2) for a single-particle distribution function allows calculation of nonlinear
contributions to the momentum stress tensor σij =(vi − ui)(vj − uj ) − v2δij /d . In a
remarkable paper, based on (2.1)–(2.2), Chen et al. (2004) formulated the Chapman–
Enskog expansion in powers of two dimensionless parameters: Kn = λ/δ−, where
δ− is the width of the boundary layer, and Wi = τω = τ (∂tu)/u. In this formulation:
∇ = ε∇1,

∂

∂t
= ε

∂

∂t0
+ ε2 ∂

∂t1
+ ε3 ∂

∂t2
+ · · · (2.5)
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and the probability density function (p.d.f.) is expanded in powers of ε as
f = f (0) + εf (1) + ε2f (2) + · · · . Substituting these expressions into (2.1), (2.2) and
equating terms of the same order in ε results in f (0) = f eq and(

∂

∂t0
+ v · ∇

)
f (0) = −f (1)

τ
, (2.6)

(
∂

∂t0
+ v · ∇

)
f (1) +

∂

∂t1
f (0) = −f (2)

τ
, (2.7)

etc. The mean of any fluctuating variable is then calculated as A(v) = A(0) + A(1) +
A(2) + · · ·, where A(n) =

∫
f (n)A(v) dv.

To illustrate the main results and simplify notation, in what follows we set
temperature θ = const. The calculation of Chen et al. (2004) gives

f (1) ≈ −τ

θ
f (0)Sij

[
(vi − ui)(vj − uj ) − (v − u)2

d
δij

]
(2.8)

and

f (2) = −2τ 2f (0)

[
(vi − ui)

∂

∂xj

(
Sij − 1

d
∇ · uδij

)
+ O((vp − up)(vq − uq)SpiSqi)

]
. (2.9)

It is important to stress that the last contribution to the right-hand side of (2.9)
involves even powers of v′ = v − u and various products of Sij . The result is (Chen
et al. 2004)

σij = 2τθSij − 2τθ(∂t + u · ∇)(τSij )

− 4τ 2θ

[
SikSkj − 1

d
δijSklSkl

]
+ 2τ 2θ[SikΩkj + SjkΩki] (2.10)

where the rate of strain and the vorticity tensor are respectively,

Ωij =
1

2

[
∂ui

∂xj

− ∂uj

∂xi

]
, Sij =

1

2

[
∂ui

∂xj

+
∂uj

∂xi

]
.

The first term on the right of (2.10), resulting from the first-order Chapman–Enskog
(CE) expansion, corresponds to the familiar Navier–Stokes equations for a Newtonian
fluid and the nonlinear (non-Newtonian) corrections, given by the remaining terms,
are generated at the next, second order. The constitutive relation (2.10) is quite
complex and, in general, can be attacked by numerical methods only. However, it is
greatly simplified in an important class of simple unidirectional flows.

3. Stokes’ second problem
The flow of a fluid filling half-space 0 � y is generated by a solid plate at y = 0

moving along the x-axis with velocity Up(0, t) = U cos ωt . Since velocity components
in the y- and z-directions are equal to zero, we need only solve the equations for the
x-component of velocity field u(y, t). Due to the geometry of the problem

ux ≡ u = u(y, t), uy ≡ v = 0, u · ∇ = 0, ∂x = 0. (3.1)

Thus, since i �= j , we are interested in σx,y . In this case, the equation of motion
corresponding to the stress tensor (2.10) is very simple:

∂u

∂t
= ν

(
1 − τ

∂

∂t

)
∂2u

∂y2
. (3.2)
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In the limit ωτ → 0, this equation is to be solved subject to the no-slip boundary
condition, u(0, t) = U cosωt, limy→∞ u(y, t) = 0. Seeking a solution satisfying the
boundary condition at y → ∞ as u = Re (φ(y)e−iωt ) gives φ = Be−y/δ and in the
low-frequency limit Wi = τω � 1:

u(y, t) = Uexp

(
−

√
ω

2ν

(
1 − τω

2

)
y

)
cos

(
ωt −

√
ω

2ν

(
1 +

τω

2

)
y

)
. (3.3)

In a classic case ωτ = 0, the flow is characterized by a single scale
√

2ν/ω describing
both ‘penetration depth’ and wavelength of transverse waves radiated by the
oscillating plate. We can see that the non-Newtonian O(τω) contribution leads to the
formation of two different length scales: the O(τω) increasing penetration depth and
the wavelength decreasing by the same magnitude. This is a qualitatively new feature
of this flow. Now we calculate the dissipation rate. The force acting on a unit area of
the wall at y = 0:

µ

(
1 − τ

∂

∂t

)
∂u(0, t)

∂y
= −U

√
ωµρ

[
cos

(
ωt +

π

4

)
+

τω

2
cos

(
ωt − π

4

)]
(3.4)

is phase-shifted relative to velocity field u(0, t) = U cosωt . This result differs from its
classic Newtonian counterpart by an O(τω/2) shift. The mean energy dissipated per
unit time per unit area of the plate is calculated if we multiply (3.4) by −U cos ωt

and integrate over one cycle, with the result:

W (τ, ω) =
U 2

2

√
ωµρ

2

(
1 +

τω

2

)
> W (0, ω). (3.5)

4. Large deviations from Newtonian fluid mechanics
As τ → 0, the expansion gives the classic Stokes results (Stokes 1851; Landau &

Lifshitz 1959). Moreover, in the limit τω � 1, the second-order-in-S correction to
(2.10) disappears due to the symmetries of the problem defined by (3.1). Expression
(2.10) includes a time derivative which, for the oscillating flow we are interested
in this paper, introduces an additional dimensionless parameter Wi = τω into the
expansion. Therefore, the CE expansion is in fact an expansion in two dimensionless
parameters KnMa = τ∂yu ≈ uλ/cδ and Wi = (τ/u)∂tu ≈ τω. As will be shown below,
in simple-geometry oscillating flows, these parameters are quite different: as τω → ∞,
the second parameter Kn → 0. Thus, while neglecting the small, O(∇2nu) term with
n> 1, the ‘Burnett contributions’, we will attempt to sum the entire series in Wi = τω.
The Boltzmann equation is

∂f

∂t
+ vα

∂f

∂xα

+
f

τ
=

f e

τ
. (4.1)

Multiplying (4.1) by (vi − ui)(vj − uj ) and integrating over v, we derive the equation
for the stress tensor (i �= j ):

∂σij

∂t
+

σij

τ
= − 1

ρ

∫
dv(vi − ui)(vj − uj )vα

∂f

∂xα

(4.2)

or

∂σij

∂t
+ u · ∇σij +

σij

τ
= −2σi,α

∂uj

∂xα

− ∂

∂xα

(vα − uα)(vi − ui)(vj − uj ) − σij ∇ · u. (4.3)
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By virtue of (3.1), this equation is simplified:

∂σij

∂t
+

σij

τ
= −2σi,α

∂uj

∂xα

− ∂

∂xα

(vα − uα)(vi − ui)(vj − uj ). (4.4)

In the unidirectional flow we are interested in, only ∂yu �= 0 and therefore,
σi,α∂xα

u = σyy∂yu. The remaining term on the right of (4.4) can also be simplified,
leading to:

∂σy,x

∂t
+

σy,x

τ
= − 2θ

∂u

∂y
− ∂

∂y
v2

y(vx − u) (4.5)

where θ = σy,y = v2
y =1

3
(v − u)2. This equation is formally exact.

Our goal now is to evaluate

Σij =
∂

∂xα

(vα − uα)(vi − ui)(vj − uj ) = Σ
(0)
ij + Σ

(1)
ij + Σ

(2)
ij + · · · . (4.6)

This can be done readily with relations (2.8)–(2.9) derived in Chen et al. (2004). We
see that Σ

(0)
ij = 0 and Σ

(1)
ij = 0. Evaluated on f (2) from (2.9):

Σ (2)
xy ≈ τ 2 ∂

∂y
v2

y(vx − ux)2|0
∂2u

∂y2
≈ τ 2θ2 ∂3u

∂y3
(4.7)

where A|0 =
∫

f 0(v)A(v) dv. It will be shown a posteriori that in both limits τω → 0

and τω → ∞, the second-order contribution Σ
(2)
ij /θ∂xu ≈ τ 2θ/δ2 → 0, where δ is the

width of the viscous layer.
By virtue of symmetry, the high powers of S disappear from the second-order

relation (2.10). It is easy to see that this result is valid to all orders. Consider a
general nth -order contribution to the rank-two stress tensor σx,y of the kind

ξ (n)
x,y =

∂uα1

∂xα3

∂uα2

∂xy

∂uα3

∂xαn−1

· · · ∂ux

∂xαn

· · · ∂uαn−1

∂xα2

∂uαn

∂xα1

(4.8)

where the summation is carried out over the randomly distributed Greek subscripts.
Since v = 0 and ∂xu = 0,

∂ux

∂xαn

∂uαn

∂xα1

=
∂u

∂y

∂v

∂xαn

= 0 (4.9)

and we conclude that ξ (n)
x,y = 0. This result, as a property of tensors of rank two

formed from velocity derivatives in boundary layers where only ∂yu �= 0, is mentioned
in Landau & Lifshitz (1981). Denoting σx,y ≡ σ , based on the above considerations,
we obtain an equation valid in both low- and large-frequency limits:

∂u

∂t
= −∂σ

∂y
, τ

∂σ

∂t
+ σ = −ν

∂u

∂y
. (4.10a, b)

Comparing this result with (3.2), we conclude that constitutive equation (4.10) is a
resummation of the Chapman–Enskog expansion used in the low-order derivation of
(2.10). Indeed, the Fourier-transform of (4.10b) is equal to (1 + iωτ )σ (y, ω) = νdu/dy

which in the limit ωτ → 0, coinsides with (3.2). Equations (4.10) give

τ
∂2u

∂t2
+

∂u

∂t
= ν

∂2u

∂y2
. (4.11)

Equation (4.11), derived here for the case of a rapidly oscillating plate, is the
telegrapher’s equation explored by Rosenau (1993).
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Figure 1. Dissipation rate 2W (τ, ω) as a function of ω (expression (4.16), arbitrary units).

Boundary conditions. Interested in the limit ωτ > 1, we have to be careful with the
choice of boundary condition. The one used in this work is u(0, t) = U (ωτ ) cos ωt =
α(ωτ )U cos ωt . The ‘slip factor’ has recently been investigated in detailed numerical
simulations, where it was shown that for ωτ � 1, α(ωτ ) ≈ 1 and it rapidly decreases
to α(ωτ ) ≈ 0.3 − 0.2 for 1 < ωτ � 100 (Colosqui & Yakhot 2007; Alexander F. 2007,
personal communication). Dealing with the linear equation, we can remove the slip
factor from consideration by first introducing the normalized velocity field u/U (ωτ ),
solve the equations and then recover u(y, t).

Solution. The solution to equation (4.11) is found readily: u =Re[e−iωte−y/δ] with
1/δ = − (1 − i)

√
ω/2ν

√
1 − iωτ and

u = Ue−y/δ− cos(ωt − y/δ+) (4.12)

where

1/δ± = (1 + ω2τ 2)1/4
√

ω/2ν
[
cos

(
1
2
tan−1(ωτ )

)
± sin

(
1
2
tan−1(ωτ )

)]
. (4.13)

In the limit ωτ → 0, this solution tends to (3.13) derived above. As we see, the
non-Newtonian second Stokes problem can be characterized by two different length:
scales: the penetration length δ− and the wavelength δ+. In the limit ωτ → ∞, the
penetration length tends to infinity and the dominating dissipation mechanism is
wave generation. (This limits the velocity gradients in this problem.) To calculate the
force acting on unit area of the plate, we notice that in accord with the differential
equations (4.10):

σ (0, t) = ρν exp

(
− t

τ

)∫ t

−∞

∂u(0, λ)

∂y
exp

(
λ

τ

)
d
λ

τ
(4.14)

where ν∂u(0)/∂y = U (−(cos ωt)/δ− + (sin ωt)/δ+) and

σ (0, t) = ρν
U

1 + ω2τ 2

[
− 1

δ−
(cosωt + ωτ sinωt) +

1

δ+

(−ωτ cosωt + sinωt)

]
(4.15)

where ρ is the density of a fluid. To obtain the dissipation rate per unit time per unit
area of the plate, we calculate W = − u(0, t)σ (0, t) averaged over a single cycle:

W (τ, ω) =
1

2

µU 2

1 + ω2τ 2

(
1

δ−
+

ωτ

δ+

)
. (4.16)

A plot of the normalized dissipation rate as a function of ωτ is shown on figure 1.
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As ωτ → 0, we recover the previous result W/
√

ω ∝ (1 + 1
2
ωτ ). In the opposite limit

ωτ → ∞, saturation of the curve W (ωτ ) is predicted. In this range, the kinetic energy
of the plate oscillations is mainly dissipated into wave radiation.

Described by (4.10), which in rheology is called the Maxwell model, viscoelastic
phenomena are a well-known feature of flows of high-molecular-weight polymer
solutions (for excellent reviews see Bird, Stewart & Lightfoot 2002; Brodkey 1967).
Treating polymers as elastic springs, this model is usually phenomenologically
introduced by the addition of elastic (Hookean) contributions, dominating the high-
frequency properties of the stress tensor. This approach led to many important results,
including (4.12), (4.13) (Bird et al. 2002). The viscoelasticity of polymer solutions can
be attributed to their very large polymer-dominated relaxation times resulting in
Wi = τω > 1 even in the moderately high-frequency flows which, according to the
theory, are governed by (4.10). It follows from our formulation that this feature is a
general property of high-frequency fluid dynamics and one can safely conclude that all
high-frequency low-Reynolds-number (Re → 0) flows, where the inertial contributions
are negligibly small, are rheological. Except for the relaxation time approximation, no
phenomenology and no ad hoc assumptions were involved in our derivation.

5. ‘Plane oscillator’; nanoresonators
Consider a massless spring of stiffness k with two infinite plates of height h attached

to it. The losses in the spring are neglected and the friction force, acting on the plates,
is the only source of energy dissipation. The equation of motion of this ‘plane
oscillator” driven by a force R(t) is

xtt + γ xt + kx = R(t) (5.1)

where γ xt = γ u(0, t) = 2ρσ (0, t)/ms is the friction force acting on a unit mass
(ms = ρph) of a plate surface and the factor 2 accounts for the force acting on
both (top and bottom) surfaces of the plate. If the resonance I (ω0) is sharp enough,
so that δω/ω0 � 1, then we can calculate the damping (friction) force acting on the
oscillator using the theory developed above. In the Newtonian limit (hereafter, we
omit the subscript 0) ωτ → 0, (4.15) gives γ =

√
µρω/(2m2

s ) ∝
√

ω and the quality
factor (defined below) Q ≈ ω/γ ∝

√
ω. In the opposite (kinetic) limit ω → ∞ and

τ = const: γ → µωτ
√

ω/ν/(ms(1 + ω2τ 2)3/4) ∝ ω0 = const=O(ρc/ms). Thus, in this

limit the inverse quality factor 1/Q = γ /
√

ω2 − γ 2 ≈ γ /ω ∝ 1/ω. For a gas of a given
temperature, ρ ∝ p and c ∝

√
θ/mmol = const, we have 1/Q ∝ p/ω.

The relation, following from (4.15), valid in the entire range of frequency variation
is:

γ = g
ρ

√
ωpν

ρph(1 + ω2τ 2
p)3/4

[
(1 + ωτp) cos

(
1
2
tan−1ωτp

)
− (1 − ωτp) sin

(
1
2
tan−1ωτp

)]
(5.2)

where the factor g, accounting for geometrical details of the device, will be discussed
below. Our goal now is to find the relaxation time τp responsible for relaxation
to equilibrium in the immediate vicinity of the rapidly oscillating solid plate. In a
standard equilibrium situation, when λ and τ ≈ λ/c � 1/ω are the smallest length
and time scales in the system, the relaxation times in the bulk and in the immediate
vicinity of the surface are more or less equal. In a rapidly oscillating flow, such
as we are interested in, this is not so. Indeed, even in air at normal conditions,
the bulk τ ≈ λ/c ≈ 10−9 s and in modern microresonators, where ω ≈ 109 s−1, the
inequality ωτ � 1 is hardly satisfied. Moreover, in the low-pressure devices where
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ω0/2π (MHz) QTh QEx QTh QEx QTh QEx QTh QEx QTh QEx

800 800 500 500 300 300 100 100 50 50

1.97 944 758 1185 962 1510 1299 2480 329 445 439
24.2 145 139 180 175 239 231 569 474 1102 787

102.5 338 292 500 443 803 641 2361 1493 4712 2703

Table 1. Comparison between experimental data and theoretical predictions of Q for
pressures in the range 800 to 50 Toor.

10−3 � p � 103 Torr, the bulk relaxation time is huge, so that τp must be calculated
from a theory taking into account strongly non-equilibrium effects. In the absence
of such a theory, we use the results of experimental data on a driven microbeam
obtained by Karabacak, Yakhot & Ekinci (2007) who covered an extremely wide range
of parameter variation: 100 � p � 103 Torr, 106 � ω � 0.6 × 109 s−1, h = 2 × 10−5 cm.
Under the normal conditions for ω = 0.6 × 109 s−1, the observed damping parameter
was γ ≈ 1.5 × 106 s−1. (This relation is the result of the measured 1/Q = γ /ω ≈ 3 × 10−3

and ω0 = 0.6 × 109 s−1.)
Now we show that our theory, developed for the simplest possible flow geometry,

is in a close agreement with experimental data on various nanoresonators. In
nanotechnological applications, the O(10−6 cm) amplitude of displacement is much
smaller than the smallest linear dimension of a real beam or cantilever, widely used in
applications. Therefore, the relations derived in this work may be not very geometry-
sensitive. For example, the solution to the problem of an infinite cylinder oscillating
along its axis can be expressed in terms of Bessel functions, leading to O(1) variations
of the coefficient g in front of (5.2). Here, to qualitatively illustrate the origins of
the geometric factor g, we use very simple considerations. As stated above, the mass
per unit area of a plate of height h and length l is ms = ρpl2h/l2 = ρph. A simple
calculation of ms for a circular cylinder gives ms = ρa/2, where a is the radius. In this
case, gcyl ≈ 4dplate . For a beam of height h and width w, we have ms = ρpwh/(2(w + h)).
Thus, the dissipation per unit area may be a relatively universal property (Karabacak
et al. 2007). Choosing g ≈ 3 and using the experimental data for normal pressure
p = 800 Torr as a calibration point, we obtain τp(800 Torr) ≈ 2.2 ns (Karabacak
et al. 2007). Then, based on kinetic theory, we substitute τp =1850/p ns into (5.2)
and obtain γ and quality factor Q(ω, p) in good agreement with the results data of
Karabacak et al. (2007) in a wide range of both frequency and pressure variation
(106 � ω � 0.6 × 109 Hz; 100 � p � 1000 Torr.) It is interesting that all experimental
data of Karabacak et al. (2007) on beams and cantilevers were successfully fitted by
(5.2) with the geometric factor 2.8.

Comparisons between theoretical predictions based on (5.2) and experimental data
are presented in figure 2 and table 1. The damping factor γ (Ekinci & Karabacak,
2007, personal communication), obtained from experiments on a cantilever operating
at a relatively low frequency ω =2π × 309 kHz, is compared with theoretical
predictions in figure 2(b) for a wide range of pressure variation. The theoretically
predicted transition, indicated on figure 2(b) by an arrow, from Q ∝ ω in the low-
pressure region, to Q ∝

√
ω, is clearly seen. The transition point at p ≈ 3−4 Torr (see

figure 2b) corresponding to τω ≈ 1850ω/p ≈ 1, is well correlated with the theoretical
curve (solid line). The data on high-frequency double-clamped beams, covering a wide
range of pressure variation (50 � p � 800 Torr), are shown in table 1.
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Figure 2. (a) Theoretical inverse quality factor 1/Qth ≈ γ /ω vs ω (formula (5.2)) in the
pressure interval 100 < p < 1000 Torr. Relaxation time τp(800 Torr) = 2.2 ns. For remaining
parameters, see text. (b). Comparison of theoretical and experimental Qth and Qe quality
factors for a cantilever at ω = 2π × 309 kHz and 0.1 � p � 800 Torr. (Ekinci & Karabacak,
2007, personal communication). Solid curve, theory; circles, experimental data. Broken line
shows non-Newtonian asymptotics Q ∝ ω.

In the limit p → 0, the only relevant dissipation is due to the inelastic solid-state
effects within the resonator. Thus, to assess the fluidic dissipation, dominating the high-
pressure regime, this residual damping must be subtracted from the total dissipation
rate. This procedure, introducing some inaccuracy in the low-pressure range, has been
applied by Karabacak et al. (2007). Variation of the operating frequency has been
achieved by manufacturing devices of widely varying linear dimensions. This complex
fabrication process, limiting the number of available samples used in the averaging
procedure, leads to an additional statistical scattering of the data. Still, neglecting a
very few data points, corresponding to the anomalously large deviations, the deviation
of theoretical predictions from experimental data was within 10 % − 20 %. A more
extensive comparison of the theory with experiments, covering different devices, can
be found in Karabacak et al. (2007).

In a dense liquid where ωτ � 1, relation (5.2) gives γ = gρ
√

ων/ρph and in water
(ν ≈ 0.01 cm2 s−1, ρp/ρ ≈ 2, ω ≈ 0.6 × 109 s−1; h = 2 × 10−5 cm and w = 7 × 10−5 cm,
g ≈ 2 − 3), corresponding to the experimental set up of Verbridge et al. (2006), we

predict γ ≈ 1.2 − 1.8 × 108 s−1 and Q ≈
√

ω2 − γ 2/γ ≈ 3.5 − 5, in a good agreement
with Q ≈ 4 − 5, experimentally observed by Verbridge et al. (2006).

6. Summary and conclusions
A solution to the Boltzmann–BGK equation, for the problem of a flow generated

by an oscillating plate, valid in a wide range of dimensionless frequency variation
0 � ωτ � ∞, is presented. This solution describes the experimentally observed
transition between viscoelastic (τω � 1) and purely elastic (τω � 1) regimes. The
results obtained for a simple ‘plane oscillator’, first introduced in this paper, are in
close agreement with experiments on nanoresonators operating in an extremely wide
range of pressure and frequency variation in both gases (Ekinci & Karabacak 2007,
personal communication; Karabacak et al. 2007) and in water (Verbridge et al. 2006).
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The relative insensitivity of the results to geometrical details of nanoresonators may
prove important for future numerical simulations of these important devices.

We would like to thank K. Ekinci and D. Karabacak for sharing with us their yet
unpublished data on microresonators. We benefited from the most interesting and
stimulating discussions with them and R. Benzi, H. Chen, R. Zhang, X. Shan, F.
Alexander, S. Succi, I. Karlin, V. Steinberg and H. Stone.
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